If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42=-4+2y^2
We move all terms to the left:
42-(-4+2y^2)=0
We get rid of parentheses
-2y^2+4+42=0
We add all the numbers together, and all the variables
-2y^2+46=0
a = -2; b = 0; c = +46;
Δ = b2-4ac
Δ = 02-4·(-2)·46
Δ = 368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{368}=\sqrt{16*23}=\sqrt{16}*\sqrt{23}=4\sqrt{23}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{23}}{2*-2}=\frac{0-4\sqrt{23}}{-4} =-\frac{4\sqrt{23}}{-4} =-\frac{\sqrt{23}}{-1} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{23}}{2*-2}=\frac{0+4\sqrt{23}}{-4} =\frac{4\sqrt{23}}{-4} =\frac{\sqrt{23}}{-1} $
| 42=-4+2y^2 | | 42=-4+2y*2 | | e=90 | | e=90 | | 48=3(p-53) | | 7x+2/3=1/3 | | 135=7x-4+(180-12x+11) | | 135=7x-4+180-(12x+11) | | 135=7x-4+180-12x=11 | | 135=7x-4+(180-12x=11) | | -4+7=10u+37 | | 2x-1=6x-13 | | 3(x-3)=−8(2x−3) | | 6r—5=65 | | 6r—5=65 | | 6s+19=85 | | 6s+19=85 | | 17=w/2+14 | | X+4/12=7/6+x-8/5 | | -1/2x+2=7 | | -1/2x+2=7 | | 8x+18=(4x+9 | | 9=2/3nn=12 | | 2x=x^2+90 | | 10+10=50+5x | | (k1+1)(2k+1)=15 | | (k1+1)(2k+1)=15 | | 10+10x=50+5x | | 10+10x=50+5x | | 10+10x=50+5x | | 4(x+2.5)=22 | | 4(x+2.5)=22 |